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Wavelet representation can provide an effective time-frequency analysis for nonstationary signals, such as
the electrocardiogram �EKG� signals, which contain both steady and transient parts. In recent years, wavelet
representation has been emerging as a powerful time-frequency tool for the analysis and measurement of EKG
signals. The EKG signals contain recurring, near-periodic patterns of P, QRS, T, and U waveforms, each of
which can have multiple manifestations. Identification and extraction of a compact set of features from these
patterns is critical for effective detection and diagnosis of various disorders. This paper presents an approach
to extract a fiducial pattern of EKG based on the consideration of the underlying nonlinear dynamics. The
pattern, in a nutshell, is a combination of eigenfunctions of the ensembles created from a Poincare section of
EKG dynamics. The adaptation of wavelet functions to the fiducial pattern thus extracted yields two orders of
magnitude �some 95%� more compact representation �measured in terms of Shannon signal entropy�. Such a
compact representation can facilitate in the extraction of features that are less sensitive to extraneous noise and
other variations. The adaptive wavelet can also lead to more efficient algorithms for beat detection and QRS
cancellation as well as for the extraction of multiple classical EKG signal events, such as widths of QRS
complexes and QT intervals.
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I. INTRODUCTION

An electrocardiogram �EKG� is a time-varying signal that
captures the ionic current flow responsible for the contrac-
tion and subsequent relaxation of the cardiac fibers. It is a
typical near periodic but nonstationary signal �see Fig. 1�.
The surface EKG is obtained by recording the potential dif-
ference between two electrodes placed on the surface of the
skin. A single normal cycle of the EKG represents the suc-
cessive atrial and ventricular depolarization-repolarization
events which occur with every heart beat and includes P, Q,
R, S, T, and U waves �see Fig. 1�:

�i� P wave: the sequential activation of the right and left
atria.

�ii� QRS complex: right and left ventricular depolariza-
tion.

�iii� T wave: ventricular repolarization.
�iv� U wave: origin though not clear, is probably “postde-

polarization” in the ventricles.
Patterns from the surface electrocardiogram �EKG� sig-

nals are widely used in the diagnosis of various cardiac dis-
orders �1–3�. Similar to the pattern recognition techniques
used successfully in speech, fingerprinting, etc. �4,5�, EKG
signal pattern matching may also provide the opportunity to
recognize the same person �biometric identification� and di-
agnose heart diseases by means of the similarity comparison
with the evaluated patterns of a typical patients’ EKG in the
collected databases. This paper presents a technique for cus-
tomizing the wavelet functions adapted to the EKG signal
pattern through the use of principles of nonlinear dynamics.
In specific, we show that using tools such as Poincare sec-
tion, one can achieve extremely compact signal representa-

tion �two orders of magnitude reduction in signal entropy�
that can be more sensitive to different EKG signal patterns.
The remainder of this paper is organized as follows: Sec. II
gives a brief background of the applications of wavelet trans-
form in surface EKG analysis; Sec. III is the research meth-
odology used; Sec. IV presents the implementation of de-
signing a customized EKG wavelet function and its
comparison with standard wavelet library, and Sec. V pre-
sents the conclusions from the reported research and perspec-
tives on future investigations.

II. WAVELET SIGNAL REPRESENTATION
OF EKG SIGNALS

EKG signal traces are gathered and stored in analytical
instruments �e.g., EKG machines� in the form of time series.
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FIG. 1. �Color online� Electrical and mechanical events diagram

during one heart beat �28�.
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They can be transformed from the time domain into fre-
quency, time-frequency �e.g., wavelets�, or other domains de-
pending on the nature of the information required. These
signals exhibit recurrent patterns spread over multiple scales,
and significant nonstationarity. Wavelet methods are most ef-
fective in capturing spatio-temporal content of such signals
over multiple scales of resolution.

Wavelet functions ��t� are building blocks that can be
used to simultaneously decompose signal characteristics in
both time and frequency domains. Wavelet representations
are particularly useful for the analysis of transients, aperiod-
icity, and other nonstationary signal features. Subtle changes
in signal morphology can be highlighted over the scales of
interest through the interrogation of the transform �6�. Con-
sequently, the QRS complex can be distinguished from high
P and T waves, noise, baseline drift, and other artifacts in
different scales. The relation between the characteristic
points of EKG signals and those of modulus maximum pairs
of its wavelet transforms are almost straightforward to estab-
lish �7�.

Over the past few years, wavelets have been used in the
analysis of physiological signals, such as EKG, Electroen-
cephalogram �EEG�, Electromyogram �EMG�, blood pres-
sure, and respiration signals �6�. Researchers have been ex-
ploring the applicability of wavelets for capturing complex
nonlinear dynamics of EKG �8–10�. However, not much at-
tention was given for the detection of certain complex pat-
terns inside the EKG signals. Conceivably, much of the in-
formation necessary for early diagnosis of various ailments
are buried in these complex patterns. Optimal matched wave-
let for EKG signals can be extremely useful at finding occur-
rences of certain complex recurring patterns. Through effec-
tive use of recurrence analysis principles from nonlinear
dynamic system theory and customized wavelets, it is pos-
sible to compact a multiscale representation by over two or-
ders of magnitude �measured in terms of signal entropies�
compared to a multiscale representation using any standard
wavelet basis.

III. RESEARCH METHODOLOGY

There are several existing families of standard wavelets,
such as Haar, Daubechies, Coiflet, and so on �11�. The choice
of wavelet basis functions plays a significant role in deter-
mining the compactness of the resulting wavelet representa-
tion. There is no consistent answer to the question: Which is
the best wavelet? Some wavelets are better suited for detect-
ing some particular problems, such as discontinuities and
breakdown �e.g., Haar wavelet to detect discontinuities�,
while others are superior for long term estimation or com-
pression �e.g., a sufficiently regular wavelet with k �k�3�
vanishing moments will be better to compactly represent a
smooth signal�.

Nonetheless, it is generally understood that the closer the
basis functions match the signal patterns, the more compact
the representation will be. As shown in Fig. 2, this investi-
gation presents a customized wavelet function design using
least square fitting for the fiducial signal pattern extracted
from the nonlinear system dynamic characterization of signal

state space. In the first step, system phase space trajectory
will be reconstructed from the observed time series. False
nearest-neighbor test and mutual information test provide the
necessary parameters, namely, embedding dimension dE and
time delay d� �12�. After the reconstruction of phase space,
those ensembles can be extracted from Poincare sectioning
of the trajectory �13�. The Karhunen-Loeve �KL� transforma-
tion of those extracted signal ensembles provides the fiducial
signal pattern for the least square customized wavelet design
stage. We use polynomial wavelet structures and a con-
strained least square fit procedure �14�. To fit the structure to
match as closely as possible, subject to admissibility and
regularity constraints. The details of the two major steps of
fiducial pattern extraction and wavelet fitting are presented in
the following two subsections. Finally, representation en-
tropy is calculated to compare the performance of various
wavelets. Signal entropy h is a measure of parsimony of
representation �15,16�. Here, the normalized entropy with
EKG signal energy is used as follows:

h = −� �
�,s

p��,s�log10 p��,s�d�ds , �1a�

where

p��,s� =
��x

���,s��2

�x�t��2 , �1b�

�x
��� ,s� is a continuous wavelet transform coefficient at

scale s and translation �, and �x�t��2 is the signal energy. The
smaller the value of signal entropy, the greater is the parsi-
mony of the representation �17,18�. Intuitively, “high en-
tropy” means the representation coefficients �x

��� ,s� is from

FIG. 2. Procedure for customized wavelet design from system
nonlinear dynamics.
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a uniform �boring� distribution, i.e., the histogram of distri-
bution of values of coefficients would be flat, and “low en-
tropy” means that coefficients �x

��� ,s� is from varied distri-
bution �consisting of multiple distinct peaks and large
valleys�. The varied distribution of representation provides
the accurate detection of signal pattern.

A. Phase space fiducial pattern extraction

Natural systems generally show nonstationary and com-
plex behaviors. The Karhunen-Loeve �KL� transform pro-
vides an optimal representation for second-order stochastic
processes. The KL representation of a stochastic process x�t�
is given by

x�t� = �
j

bj� j�t� . �2�

Here, bj’s are KL representation coefficients, and the basis
function �j�t� are the linearly independent solutions of

�
R

K�t,��� j���d� = � j� j�t� , �3�

where K�t ,�� is the autocovariance function calculated from
a set of signal ensembles. It is evident that � j are eigenval-
ues, and � j�t� are eigenfunctions of K�t ,��, and are therefore
orthogonal. The order of eigenvalues, highest to lowest, in-
dicates the components in order of significance. The KL ba-
sis can be approximated using a set of ensembles of the
process x�t� such that the mean square error �MSE� between
a given set of ensembles and their projection to the sub-
spaces spanned by each basis function of the KL representa-
tion is minimized.

However, in the absence of multiple realizations of x�t�,
underlying nonlinear dynamics should be taken into account
in order to extract ensembles needed to develop optimal rep-
resentations �i.e., basis set� of signals from these systems.
The nonlinear and stochastic dynamic characterization of a
system is usually helpful in providing information on the
dimensionality and the functional form of models that can
capture the observed behaviors �12�.

The time evolution of the phase space trajectories ema-
nated from the system explains the underlying nonlinear dy-
namics. Usually, the measured observations of a process can-
not include all possible state variables. Couplings among the
system’s components imply that each single component con-
tains necessary information about the dynamics of the larger
system. The embedding theorem of Takens �19� guarantees
that the reconstructed trajectory portrays the dynamics in the
higher dimensional state space. It states that a diffeomor-
phism exists between the reconstructed phase space with the
state vector given by

x��tn� = �x�tn�,x�tn+d�
�,x�tn+2d�

�, . . . ,x�tn+�dE−1�d�
�� , �4�

and original phase space, if dE�2D+1, where dE is the em-
bedding dimension, d� is the time delay, and D is the dimen-
sion of the compact manifold containing the attractor. This
implies that the dimension and entropy spectra of the recon-
structed attractor are the same as those of the original one.

Poincare section is a dE-1 dimensional hyperplane inter-
secting with the phase space trajectories �see Fig. 3�. The
recurrence property of a chaotic attractor A shows that for
every �	0 and almost every x��0��A , ∃ t
0 such that
�x��0�−x��t��	�, in effect, the trajectories with an attractor
remain bounded. Those points Pi, i=1,2 , . . . at which the
trajectory intersects the Poincare section follow a return map.
For strictly periodic trajectory, the points Pi, i=1,2 , . . . will
overlap �i.e., �	0� such that the duration between Pi to Pi+1
along the trajectory constitutes the period. For chaotic sys-
tems no two Pi’s overlap. For near-periodic signals, such as
EKG, each strand emanating from a Poincare section inter-
section point Pi and lasting approximately until the next in-
tersection Pi+1 along the trajectory may be treated as a real-
ization of a stochastic process from an invariant probability
space �18�. Due to heart rate variability, some ensembles
move faster, i.e., the two successive intersections occur over
shorter intervals, compared to the others �20,21�. In our in-
vestigations the length �time duration� of the ensembles is
taken as the time interval between the intersections of the
fastest ensemble. Moreover, those collected near-periodic en-
sembles provide an effective way for the Karhunen-Loeve
�KL� representation of this signal. In this EKG investigation,
the largest eigenvalue �max is 4.3026, which implies that
98.34% of the total variation occurs along the leading �the
first one out of 41� eigenfunctions. Intuitively, each eigen-
function ��·� captures the shape of a specific mode of varia-
tion �roughly, a degree of freedom� of x��·�. The fiducial pat-
tern ��t� of a signal emerging from a process with d degrees
of freedom �or topological dimension D, where d= �D�� is
obtained as the optimal projection of the ensembles onto the
space spanned by �1�·� ,�2�·� , ¯ ,�d�·�. For computational
convenience �during matching wavelet design�, the support
of ��t� is rescaled so that t� �0,1�.

B. Least squares matching wavelet design

The continuous wavelet transform �CWT� �x
� of the sig-

nal x�t� using the analysis wavelet ��t� is

�x
���,s� =

1

�s�

�
t

x�t��̃� t − �

s
�dt , �5�

where �̃ is the dual of ��t� �22�. If x�t� is similar to the
wavelet basis functions, then the coefficients �x

� will likely

Poincare section π

Trajectory

FIG. 3. �Color online� An illustration of trajectories of an attrac-
tor intersecting a �planar� Poincare section.
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be large only for a few basis functions. Thus, the customized
wavelet function adapted to the EKG pattern may achieve
the best performance. We design the wavelet function using a
least squares approach �11,23,24�. A wavelet basis function
��t� is approximated as a polynomial regression of degree
M,

��t� = a0 + a1t + a2t2 + ¯ + aMtM = �
m=0

M

amtM = U�t��T,

U�t� = �1 t t2
¯ tM� ,

� = �a0 a1 a2 ¯ aM� . �6�

Let us assume that N-sample time series of fiducial EKG
pattern ��t� be available such that

ZN = ��tn�, 0  tn  1� . �7�

Similarly, we can reduce operator U�t� to a Vandermonde
matrix A, whose elements are powers of t, will be as follow-
ing:

A = �
1 t1 t1

2
¯ t1

M

1 t2 t2
2

¯ t2
M

] ] ]

1 tN tN
2

¯ tN
M
� 0  t1, . . . ,tN  1. �8�

It is important that the function ��t� which cannot only best
fit the fiducial signal pattern ��t� but also satisfy the wavelet
admissibility and regularity conditions �11�. The admissibil-
ity requirements for any valid real or complex-value
continuous-time function ��t� to be a wavelet basis function
can be summarized as reconstruction, zero mean, finite en-
ergy, and regularity constraints. The first three defines the
wave, and the last condition determines the rate of decay or
the let. A function satisfied with all the four conditions can

be a valid wavelet for CWT �11,23,24�.
Since the fiducial pattern ��t� is a finite length signal, the

finite energy requirement is automatically met. The zero
mean condition �−�

� ��t�dt=0 implies that the Fourier trans-
form of ��t� vanishes at the zero frequency ��F�����2��=0

=0, where F���� stands for the Fourier transform of ��t�. So,

it will also make sure that C�=�−�
�

�F�����2

��� d� is finite for the
success of inverse continuous wavelet transform,

x�t� =
1

C�
�

s
�

�

�x
���,s�

1

s2�� t − �

s
�d�ds ,

C� = �
−�

� �F�����2

���
d� . �9�

Summarizing, the least square Mth degree polynomial fitting
with regularity K for the wavelet design will add zero mean
and regularity conditions, and the deduction of revised ma-

trix Ã and ZN is as following.
�1� Zero mean:

�
0

1

��t�dt =��a0t +
a1t2

2
+ ¯ +

aMtM+1

M + 1
��

0

1

= 0. �10�

�2� Regularity: The ith moment of the function ��t� is
defined as �−�

+�ti��t�dt. If the function’s first i moments are
zero �−�

+�ti��t�dt=0 for 0 jk, the number of vanishing
moment of the function ��t� is k+1,

�
0

t

ti��t�dt =��a0ti+1

i + 1
+

a1ti+2

i + 2
+ ¯ +

aMti+M+1

i + M + 1
��

0

1

= 0,

1  i  k . �11�

New Vandermonde matrix Ã will contain polynomial terms
of t and the wavelet constraints,

Ã = �
1 t1 t1

2 . . . t1
M

] ] ]

1 tN tN
2 . . . tN

M

1 1/2 1/3 . . . 1/�M + 1�
1/2 1/3 1/4 . . . 1/�M + 2�
] ] ]

1/�k + 1� 1/�k + 2� 1/�k + 3� . . . 1/�k + M + 1�

� 0  t1, . . . ,tN  1, �12�

� = �a0 a1 a2 ¯ aM� and ZN = ���t1�, ¯ ,��tN�,0,0, ¯ ,0�T. �13�

The N-sample estimate of the coefficients vector �̂N of the
matching polynomial wavelet function can be determined to
minimize the objective function VN�� ,ZN�,

VN��,ZN� =
1

N
�
t=1

N

�ZN − ÃT��2, �14�

YANG, BUKKAPATNAM, AND KOMANDURI PHYSICAL REVIEW E 76, 026214 �2007�

026214-4



�̂N = arg min
�

VN��,ZN�� , �15�

and the estimate can be obtained using the pseudoinverse

�T = ZN�ÃTÃ�−1ÃT. �16�

IV. IMPLEMENTATION OF WAVELET DESIGN ADAPTED
TO EKG PATTERN

As discussed in the research methodology section, the co-
efficients of a compact wavelet representation need to be
more sensitive to variation in the underlying processes
�physiological� and less sensitive to noise variation. Thus,
feature sets extracted from a compact representation tend to
be lighter �i.e., fewer and more sensitive� and more effective
in estimating various anomalies �here, different atrial fibril-
lation �AF� states�. For implementation and validation of the
present approach, we utilized the EKG data from the 2004
PhysioNet challenge named “Spontaneous Termination of
Atrial Fibrillation �AF�” , posted on the PhysioNet website
�25,26�. Atrial fibrillation �AF� is one of the serious cardiac
disorders that affect millions of human beings, and its early
detection can have a significant bearing on the quality of
healthcare. In this contest, classification needs to be made
among the following three categories of AF patients test sig-
nals:

�1� Group N. Nonterminating AF �defined as AF that was
not observed to have terminated for the duration of the long-
term recording, at least an hour following the segment�.

�2� Group S. Soon to be terminating �AF that terminates
one minute after the end of the record�.

�3� Group T. Terminating immediately �AF terminating
within one second after the end of the record�.

In all, 80 recordings of AF from 60 different subjects were
made available in the database. Each record is a one-minute
long segment containing two channel EKG signals �lead I
and II�, acquired at 128 sampling rate. Figure 4�a� contains
EKG signal trace taken from a subject with AF for the dura-
tion of approximately 10 heartbeats. The trace shows a QRS
complex with a significant R peak followed by a T wave. The
signal is superposed with higher frequency �
6 Hz� atrial
fibrillation F waves in lieu of P waves.

After the false nearest neighbor and mutual information
test �12,27�, the optimal embedding dimension and time de-
lay were determined, and the state space from the EKG
traces using time delay coordinates in dE embedding dimen-
sions as x��tn�= �x�tn� ,x�tn+d�

� ,x�tn+2d�
� , . . . ,x�tn+�dE-1�d�

�� �see
Fig. 4�b��. The reconstructed state space shows a large loop
of QRS complex extending top down and left to right, with
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FIG. 4. �Color online� �a� Time domain plot of a representative
EKG signal trace �a01�. �b� State space portrait reconstructed from
time delay coordinates.
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the R peaks occurring at the top and right extrema. A T loop
as well as an irregular ball formed by the F waves are ob-
served near the origin �bottom left corner�. The Poincare
sections �1 and �2 of the state portrait, as shown in Fig.
4�b�, can be used to gather alternative sets of pattern en-
sembles.

The choice of the Poincare section � affects the shape of
the pattern as well as the performances �entropy� of the rep-
resentation. For example, one needs to choose the Poincare
section such that the flow lines are directed about one or two
flat planes, in which case � takes the form of a simple planar
object. Also, it is desirable that the local Lyapunov exponent
�max of the state is close to or below zero about �. This will
help in making sure the resulting wavelet easily satisfies the
constraints imposed by Eqs. �10� and �11�. In this context,
wavelet customized through Poincare section �1 can yield
better performances than that through Poincare section �2 as
shown in Fig. 4�b�. Figure 5 shows the ensembles gathered
from Poincare section �1. The fiducial EKG signal pattern
used for the wavelet design stage can be extracted from

dominant eigenfunctions estimated using the KL representa-
tion. Figure 6 shows the least square matching wavelet de-
sign result. The resulting wavelet ��t� holds significant simi-
larities to the fiducial pattern ��t� and capture a majority of
the variations among the ensembles.

Figure 7 shows the variation of entropy �Eq. �1a�� with
the polynomial degree of the wavelet function ��t� that
matches the fiducial pattern. The minimal entropy for match-
ing wavelet �shown in Fig. 6� is found to have a polynomial
degree of 13.

As summarized in Fig. 8, the customized wavelets of an
EKG from a nonterminating AF case, obtained through Poin-
care sections �1 and �2 of the reconstructed state space,
denoted a01pat�pi1 and a01pat�pi2, respectively, and custom-
ized wavelets from normal EKG pattern �nmpat�pi1 and
nmpat�pi2�, shown in the last four bars on the right side, are
about 95% �approximately two orders of magnitude� more
compact than all standard available wavelet bases investi-
gated �shown on the left side�, namely, db2 �Daubechies-2�,
sym2 �Symlet-2�, haar �Haar�, mexh �Mexican hat�, meyr
�Meyer�, dmeyr �Discrete Meyer�, morl �Morlet�, db10

FIG. 6. Matching wavelet extracted from fiducial signal
pattern.
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�Daubechies-10�, and sym10 �Symlet-10�. Also, the wavelets
customized for a normal EKG signal seems to yield more
compact representations for a signal from a nonterminating
AF case �i.e., a01 signal in the PhysioNet �25,26�.� The two
orders of magnitude increase in the compactness of EKG
signal representation with customized wavelet �measured in
terms of entropy reduction� is further evidenced from the
examination of the distribution of entropies for eleven sig-
nals �a01, a02, a03, b01, b02, n01, n02, s01, s02, t01, t02� in
the PhysioNet database for the AF challenge with the eleven
alternative wavelet bases including the standard and the cus-
tomized wavelets �see Fig. 9�. Interestingly, the wavelets
customized for an EKG signal from a normal case yield
about five times lower entropy compared to that from a non-
terminating AF case. Also, it may be noted that, although
both customization yield extremely low entropy compared to
standard wavelet basis, the entropy of wavelet adapted from
Poincare section �2 is twice as large as that from Poincare
section �1. It is evidently due to the fact that the customized
wavelet from �1 naturally closes to satisfying the wavelet
constraint Eqs. �10� and �11�.

Reasons for the compactness of the representations are
further evident from an examination of the histograms of
wavelet coefficients of the representations �see Fig. 10�. The
figure shows the distribution of wavelet coefficients within
various bins of the histogram. The coefficients from the cus-
tomized wavelet representation �see Fig. 10�a�� are concen-
trated around zero with few large coefficients. Such a low
entropy distribution, with few large coefficients and several
near-zero coefficients can lead to clearer demonstration and
identification of various salient events in EKG signals. In
contrast, coefficients of a representation from a standard li-
brary wavelet �see Fig. 10�b�� are spread uniformly, provid-
ing no clear distinction between significant and nonsignifi-
cant coefficients. Therefore, we have used the customized
wavelets for QRST cancellation and feature extraction.

V. CONCLUDING REMARKS

The choice of various basis functions is known to deter-
mine the compactness of a wavelet representation. In gen-
eral, the closer the basis function captures the signal charac-
teristics, the more compact is the representation, and more
likely are the features sensitive to relevant EKG states and
insensitive to variations in extraneous noise. In this investi-
gation, we have customized the basis functions of a continu-
ous wavelet representation by choosing polynomial wavelet
basis functions that match the characteristics of a fiducial
1-beat long EKG signal pattern extracted from the Poincare
sectioning of EKG state space. The customized representa-
tions were found to be roughly two orders of magnitude
more compact �measured in term of signal entropy� than the
wavelet basis functions available in the standard wavelet li-
brary. The unraveling of scale-time distribution of signal
content in wavelet representation can facilitate the identifi-
cation of various EKG events including the onsets, peaks,
and offsets of various EKG waveforms for different beats.
Further, it provides a means for QRST subtraction to sup-
press EKG signal components that emerge from ventricular
sources.
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FIG. 10. Histogram of matching wavelet
transform coefficients: �a� customized wavelet,
�b� Morlet wavelet.
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